
J .  Fluid Mech. (1982), vol. 125, p p .  37s39.5 

Printed in Great Britain 
379 

Effects of inertia on the diffusional deposition 
of small particles to spheres and cylinders at 

low Reynolds numbers 

By J. FERNANDEZ DE LA MORA AND D. E. ROSNER 
Yale University, Department of Engineering and Applied Science, 

Chemical Engineering Section, New Haven, CT 06520, U.S.A. 

(Received 31 March 1981 and in revised form 25 June 1982) 
# 

A formalism that accounts for inertial and diffusive effects in the dynamics of a dilute 
gas-particle suspension is introduced. The treatment is purely deterministic away 
from a very thin Brownian diffusion sublayer, while, within the sublayer, inertial 
effects are small, permitting a near-equilibrium expansion in powers of the Stokes 
number (particle relaxation time divided by flow characteristic residence time). This 
expansion provides phenomenological expressions for the particle velocity including 
two terms : the standard Brownian diffusion, and an additional inertial drift velocity 
which is closely related to the pressure diffusion term of the Chapman-Enskog 
expansion. As an example, the general formalism is applied in detail to  the case of 
Stokes flow about a sphere, and sketched for the similar case of a cylinder. Two 
competing mechanisms are seen to affect the total rate of particle capture by the 
sphere : (if  the stagnation-point region is considerably enriched in particles owing to 
the high compressibility of the particle phase, which leads to  locally enhanced 
deposition ; (ii) centrifugal forces tend to deplete the Brownian diffusion sublayer of 
particles, reducing diffusion rates away from the stagnation point to the surface. The 
first effect is seen to  dominate over the second except in a very narrow zone of small 
Stokes numbers. Our method bridges the gap between Levich’s solution for the 
‘ pure-diffusion ’ limit and Michael’s treatment in the ‘ pure-inertia ’ limit. 

1. Introduction 
We address the problem of the motion of a swarm of very small particles suspended 

in a host gas, in the transition region where the relaxation time T of the particles 
(see (7) below) passes from being small (diffusion limit) to being comparable to or 
larger than the host-fluid residence time w-l (inertia-dominated limit). 

In  the former limit, the particles follow closely the motion of the host fluid, and 
the mixture evolution may be described by single-fluid equations (with standard 
phenomenological transport laws), very much like a gas mixture in the continuum 
region. This limit, from which inertial effects are absent, is seldom considered in the 
literature of particulate flows. I n  the inertia-dominated situation the particles depart 
considerably from the fluid streamlines, moving on their own very much like a gas 
in free molecular flow. In  that case the dynamics of the system are often treated using 
the so-called ‘ dusty-gas ’ model (Marble 1970), which basically assigns different 
velocity, density and temperature fields to  the fluid and particle phases, including 
their mutual interaction in the corresponding conservation equations. The host fluid 
is treated as Newtonian, while the particle phase is assumed not to contribute to the 
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pressure of the mixture, thus moving deterministically under the action of the 
fluid-particle drag (see also Michael 1968; Michael & Norey 1968, 1970; Morsi & 
Alexander 1972). Accordingly, particle Brownian motion is implicitly neglected,? and 
diffusion is left out of the picture. An interesting particular case within this 
inertia-dominated limit arises when the particle mass fraction is very small. Then the 
fluid motion is effectively uncoupled from the particles and may be obtained 
independently, as in ordinary fluid-mechanics problems. Now, since the particle 
momentum-conservation equations are first order p.d.e.s, they may be integrated 
along the characteristics, which are clearly equivalent to the trajectories of individual 
particles obeying the deterministic equations of Newton. Thus the Newtonian or 
Lagrangian particle trajectory method turns out to  be very simple, and has been the 
dominant technique employed in the aerosol literature for dealing with the ‘pure’ 
inertial problem. One of the most interesting results one finds in this limit for the 
flow of particulate suspensions about solid obstacles is the existence of a critical value 
of or above which the particles are unable to ‘side-step’ the obstacle (as the fluid 
does) and impact on its surface (Fuchs 1964). 

Clearly, both diffusive and inertial effects are treated in much more simple terms 
in the limit of small particle mass fraction, and we will confine ourselves to this limit 
for the study of the ‘transition’ region. That is, the region where or is of order unit$ 
Generalization of these ideas to apply away from the small-particle mass-fraction 
limit does not present any conceptual difficulty. However, the fully coupled equations 
for the two phases, including their mutual interaction, are so complicated that even 
when diffusion is neglected, in the isothermal case with an incompressible host fluid, 
they have been solved only for simple homogeneous unidimensional or parallel flows 
(Michael 1963; Nag, Jana & Datta 1979; Peddieson 1976; Singleton 1965), and the 
exceptional case of the motion of a dusty gas induced by the uniform rotation of an 
infinite disk (Zung 1969). Other valuable solutions have been confined either to this 
limit of very small particle loading, or the limit of very small particle relaxation time 
7 (compared with macroscopic times), which is unfortunately incapable of predicting 
some of the interesting inertial effects that  concern us here. Under these conditions 
it would be premature to  address the problem of diffusion effects in the case of 
non-negligible particulate mass loading. 

2. General formalism for the interaction of inertia and diffusion 
2.1. Previous work 

During the last decade several works have been devoted to the simultaneous effects 
of diffusion and inertia (Lee 1977; Lee & Gieseke 1979; Stechkina, Kirsh & Fuchs 
1970; Yuu & Jotaki 1978). Nonetheless, the interaction of those mechanisms is still 
so scarcely understood that even the governing equations used in the literature are 
often inconsistent. For example, the following mass-conservation equation was used 
by Yuu & Jotaki (1978), Yeh & Liu (1974a), Thuan (1974), Thuan & Andres (1979) 
and others:$ 

( 1 )  V .  (ppVp-DVpp) = 0. 

Here p, and V, are the particle phase density and velocity fields, and D is the particle 

t Otherwise the partial pressure of the particle phase would not be zero, since pressure is due 

$ So0 (1967) uses a curious variation of (1 )  that adds another term (see p. 38 of his book) to 
precisely to the thermal (or Brownian) motion. 

the Fick diffusion flux. 
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diffusion coefficient in the bath. Nonetheless, the correct conservation equation is not 
( 1 )  but v .  (ppVp) = 0. 

The addition of the diffusion flux - DVp, is justifiable only when the mean mixture 
velocity V is used instead of V,. Then the mass-conservation law is written as 

But this new expression is incapable of describing the interaction phenomena that 
interest us here because it does not include inertial effects. On the other hand, the 
correct equation (2) requires prior knowledge of the particle velocity field V ,  
(independently of V ) ,  which is generally obtained by calculating particle Newtonian 
trajectories (Fuchs 1964; Fernindez de la Mora & Rosner, 1981). But such deter- 
ministic calculations neglect Brownian motion ; hence diffusion is left out, and this 
formalism is also unfit for our purposes. Since the hybrid approach of (1)  provides 
a smooth transition between both extremes, while the phenomenological approach 
(3) fails to account for inertia, and diffusion is absent from the Newtonian method, 
it is not surprising that ( 1 )  has survived uncriticized for some time. However, two 
roads are now open to formulate the problem correctly: inertial effects may be 
included in the phenomenological approach, or the Brownian motion may be added 
to the Newtonian formalism. As shown below (see also Fernandez de la Mora 1982), 
particle ‘inertial drift’ and ‘pressure diffusion’ are equivalent phenomena for 
host-fluid deceleration times w - l  that are large compared with the particle 
relaxation (‘ stopping ’) time 7.  Thus, since pressure diffusion is well accounted for 
within the phenomenological framework, so is inertia. On the other hand, to include 
the effect of Brownian motion within V,, the particle-phase momentum-conservation 
equation has to be written as a partial differential equation in Eulerian continuum 
coordinates, retaining the particle-phase partial-pressure tensor P,,  which accounts 
for the momentum transfer due to the random (Brownian) motion. Not too far from 
equilibrium (i.e. a t  small values of w7 = inertia parameter), this tensor is isotropic 
and equal to the particle-phase equilibrium osmotic pressure ((6) below). Thus the 
problem is closed, obeying the following set of steady-state conservation equations 
(Robinson 1956; Marble 1970) : 

(vp.v)vp+(vp-v)/7+pp~v. P p  = 0, (4) 

v ’ (P,V,) = 0, (5) 

P ,  x Ip, kT/m,. (6) 

Here 7 is the particle relaxation time appearing in the following expression for the 
individual particle drag force due to its motion with respect to the bath: 

F, = - m P ( V p - V ) / 7 ,  (7) 

m, is the particle mass, k is the Boltzmann constant, T the absolute temperature and 
I the unit tensor. Using Einstein’s (1908) relation 

D = k T ~ / m , ,  

V ,  = V - D ( V 1 n p p ) - 7 ( V . V ) V ,  

to first order in 7 (4) gives 

where the second (Fick diffusion) term in the right-hand side originates from the 
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particle partial pressuret and the third term is the particle inertial drift, equal to 
the phenomenological pressure diffusion term, as may be directly obtained from the 
bath momentum-conservation equation (note the use of the pressure tensor rather 
than the scalar pressure) : 

where p is the bath density and P its pressure tensor. 
Thus the phenomenological approach with pressure (tensor) diffusion and the 

particle momentum-conservation approach with equilibrium osmotic pressure are 
equivalent to  first order in 7, both being applicable only at small values of the inertia 
parameter or (compared with the critical value ( ~ 7 ) ~  above which ‘pure’ inertial 
deposition sets in (Fuchs 1964)). For values of the inertia parameter that are not small 
compared with the critical, the phenomenological approach, being a first-order 
approximation, breaks down. At the same time, the mass and momentum conservation 
equations (4) and ( 5 )  are still applicable, but the pressure tensor departs appreciably 
from the equilibrium value given by (6). Thus there is no simple way to account for 
inertia and diffusion within it hydrodynamical framework, and a kinetic approach 
is necessary (see Fernandez de la Mora 1982). 

p(V.V)V = - V . P ,  (10) 

2.2. The limit of very small particle diffusivity 

In  a dilute binary mixture one can define the Schmidt number Sc  as the ratio of the 
carrier-gas kinematic diffusivity v to  the binary diffusion coefficient D (Sc = v / D ) .  
Here the fact that  Sc is a very large number for Brownian particles is exploited to 
solve the problem a t  the hydrodynamic level. We shall see that  such a treatment is 
valid only in the region of subcritical values of the Stokes number. For supercritical 
values, particles reach the wall with a finite speed dictated by purely deterministic 
phenomena, and diffusion plays a negligible role. Therefore the subcritical zone, in 
which the problem is tractable analytically, is really the principal one where the 
interaction between inertia and diffusion is of interest. Accordingly, we confine 
ourselves to subcritical Stokes number. 

Making (9) non-dimensional with the characteristic velocity Urn and length R, the 
relaxation time r in the last term becomes the Stokes number St = rU,/R, and it 
might seem that the equation is an asymptotic expansion in powers ofs t ,  apparently 
limiting the validity of any results based on (9) to the region St -+ 1. Such a conclusion 
is, however, too restrictive because in the region close to the wall the local value of 
the characteristic fluid inverse deceleration time w is not U,IR, but a much smaller 
value associated with the local value of the tensor VV (say, its largest (absolute-value) 
eigenvalue). It can be shown that, owing to  fluid incompressibility and the wall 
boundary condition, the local Stokes number so formed tends to zero as the wall is 
approached. The proof is particularly simple for the three situations of parallel, 
rotating or stagnation-point flows, and will be sketched here.$ For the latter case, 
the only relevant component of the fluid velocity is that  normal to the wall, which 
drops to  zero as the square of the wall distance y .  I n  this case w = du /dy  and vanishes 
as the first power of y .  For a parallel (Couette) flow, V . VV is identically zero. Finally, 
for a rotating fluid, o is the ratio between the tangential velocity and the local radius 
of curvature, falling also to  zero as y .  Therefore the local value of the group wr 

t The relation between partial-pressure gradients and Brownian (or Fick) diffusion was pointed 
out by Einstein (1908) (see also Frank-Kamanetskii 1969; Truesdell 1962; Chapman & Cowling 
1970) and provides an elementary theory of diffusion far more useful than the more popular 
mean-free-path argument. 

$ For a more general discussion see Fernandez de la Mora (1980, chap. 3). 
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FIGURE 1. Fluid and particle velocities (Re 4 1) normal to the sphere along the stagnation line as 
a function of non-dimensional distance to the wall. Brownian diffusion has been neglected. The 
numerical calculation demonstrates that for subcritical Stokes numbers there is a finite near-wall 
region where the fluid and particle velocity fields merge together. The Brownian-diffusion sublayer 
is well inside that region when Pe b 1, and consequently the simultaneous effects of inertia and 
diffusion are accurately described by (9) whenever St < St,. 

becomes arbitrarily small as the wall is approached. Furthermore, owing to the large 
value of the Schmidt number, the Brownian-diffusion sublayer itself lies very close 
to the wall, where inertia may be treated as a perturbation. Accordingly, in the region 
where inertia and diffusion can coexist, (9) applies (for the full range of subcritical 
Stokes numbers), and the problem of their interaction is formally closed. Our 
interpretation of (9) as an expansion in powers of the local gradients rather than the 
overall Stokes number requires further clarification. For the present, our justification 
will depend on general physical reasoning reinforced by numerical calculations. I n  
the first place, we have already seen that the inertial term 7(V. V) V in (9) is closely 
related to pressure diffusion in the Chapman-Enskog diffusion equations. But the 
Chapman-Enskog method is an expansion in powers of the local gradients (Chapman 
Lk Cowling 1970), in agreement with our interpretation. This point can also be verified 
numerically. Ignoring diffusion, one can calculate particle velocities along their 
Newtonian trajectories and check that a t  subcritical values of the overall Stokes 
number they closely approach (9) near the wall, and that this convergence occurs 
sufficiently far from the wall so that diffusion effects are indeed negligible. Results 
of this type may be seen in figure 4 of Fernandez de la Mora & Rosner (1981) for the 
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viscous stagnation-point flow (see also Fernandez de la Mora 1980, p. 63). This 
agreement remains excellent up to the critical Stokes number w7 = f. A similar 
behaviour can be observed in figure 1 for the low-Reynolds-number flow of a dusty 
gas around a sphere. For this type of flow, (9) is very inaccurate in most of the flow 
field, but holds true close to the wall for subcritical Stokes numbers (see also 
Ferntindez de la Mora 1980, ss2.4, 3.6, 7.6). Accordingly, the particle flow field has 
three distinct regions: (i) an outer one dominated by inertia where diffusion is 
negligible and the traditional method of neglecting the particle pressure tensor can 
be used to obtain the particle velocity and concentration fields; (ii) an intermediate 
region close to the walls (but still away from the diffusion sublayer) where Brownian 
motion is negligible, yet inertia can be treated as a perturbation [Vp = V- 7(V . V) V] ; 
and (iii) the Brownian-diffusion sublayer, very close to the wall, where the convective 
velocity (tending to zero) becomes comparable with the particle thermal velocity. 
Here, both inertia and diffusion are important, and their simultaneous effect8 are 
described by (9). 

3. Application to low-Reynolds-number flow about a sphere? 
3.1. Background 

Inertial effects a t  low Reynolds numbers often play an important role in gas filtration. 
The present section is, however, not directly concerned with filtration problems in 
which the flow field may be strongly affected by rarefaction or interference between 
the various filter fibres. We will simply apply the method sketched in $2 to account 
for the effects of inertia and diffusion on the deposition of particles to an isolated 
sphere moving a t  small Reynolds’ numbers in an undisturbed fluid. The generalization 
to other geometries (e.g. a cylinder, which we treat in appendix B) or other flow fields 
(e.g. the many models used in filtration (Spielman 1977)) is straightforward. 

The problem of small-Reynolds-number diffusion of particles to a sphere of radius 
R moving in an undisturbed fluid with relative velocity U, was solved by Levich 
(1962) in the absence of inertia. Levich used the stream function as an independent 
variable (von Mises’ method) to obtain an analytical solution to the mass-transfer 
problem in the limit of high PBclet numbers (Pe = U, R I D ) .  In  this section we will 
generalize Levich’s approach to include inertial effects in the motion of the particles. 
Here the role of the stream function will be played by a variable 6 which is constant 
along the subcharacteristics (see Cole 1968, p. 123) or particle trajectories obtained 
by neglecting the small second-order (diffusion) terms in the particle-phase mass- 
conservation equation. 

3.2. Host-fluid velocity Jield 
If the mass fraction of the particles in the suspension is much smaller than unity, 
the host fluid velocity field is negligibly disturbed, being described by Stokes’ 
expressions for the viscous flow about a sphere (see e.g. Landau & Lifshitz 1971). 
Defining the new non-dimensional distance to the wall 

and keeping only terms of the lowest order in q (as q is negligibly small within the 

The analogous problem of a cylinder in low-Reynolds-number flow is sketched in appendix B. 
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Brownian diffusion sublayer), the bath velocity field in spherical coordinates ( r ,  8) 
reduces to u, = - gJrn72 cos 8, 

u6 = #Urn7 sin 8. 

(12) 

(13) 

3.3. Particle velocity and density fields 

Using (9) and writing the convective term (V . V) V in spherical coordinates, we obtain 

up+ = 0. (16) 

Using (12) and (13), after neglecting terms of higher order in 7 we find 

The particle-phase mass-conservation equation 

i a  i a  
- - (r2ppupr)  +- - ( p p u p 6  sin 8)  = 0 
r2 ar r sin 8 88 

becomes, after neglecting diffusion in the @direction, 

(5 cos 8-iSt sin2 8)r2-+q sin 8 2  aP = pp&Sty sin2 8. (20) 
a8 

In  the limit St = 0 we recover Levich’s (1962) equation. Inertia introduces two 
different new terms: A convective motion away from the sphere (centrifugal drift), 
and a sink term appearing a t  the right-hand side of (20). This term arises as a result 
of the non-zero divergence of the V, field, and implies that the particle phase is 
compressible in spite of the incompressible character of the host fluid (Robinson 1956). 
As expected in a first-order expansion, those two terms are proportional to St. 

Outer solution. Since Pe-’ Q 1 we may neglect the diffusion terms in (20), which 
becomes a first-order partial differential equation. I ts  characteristics, called the 
‘subcharacteristics’ of the problem (see Cole 1968, p. 123), obey the system 

(21 ) 
4d7 - - 2d8 - W p  

r2(6 cos 8 - 9St sin2 8 )  37 sin 8 SStyp, sin2 8 ’ 

Integrating, the subcharacteristics are 

vj = 6 arcsin 8 exp ( - ZSt cos 8) ,  

and along each of them the particle-phase density varies as 

pp = n exp (3St cos O), (23) 

where 6 and n are constants for each subcharacteristic. Accordingly, may be used 
as a new independent variable with benefits equal to those obtained via the 
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stream-function (von Mises’) meth0d.t Analogously, it is also convenient to use n 
rather than pp as the dependent variable. Thus we define the new variables 

n = p p  exp ( -3St  cos 0) 

6 = 71 sin 0 exp [$St cos 01, 

(24) 

(25)  

leaving 8 unchanged. 
Boundary layer. This reduces the particle-phase mass-conservation equation to 

an 
exp ( -&St cos 8) - 

a2n 3Pe 
5-1 ~ = ___ 

at2 2 sin2 0 a8 

Observing now that the coefficient on the right-hand side of this equation is a function 
of 0 only, we may define the new variable 

s = s,” sin2 0’ exp (ixt cos 0’) do’, 

leading to the familiar Leveque equation (see e.g. Stewart 1977) 

Boundary  conditions. The standard boundary condition at the wall accounting for 
the finite diameter d ,  of the particles is n = 0 a t  r = R + g P .  This condition introduces 
the so-called interception parameter d p / R  into the problem. For point particles 
( d p / R  + 0) ,  the differential equation and the wall boundary condition are compatible 
with solutions depending only on the similarity variable ,u - [/s;, thus we consider 
explicitly the limit d,/R -+ 0. Finite particle size (treated, in the absence of inertia, 
by Friedlander 1977) unfortunately breaks the self-similarity, and therefore requires 
the solution of (27) as a partial differential equation. The generalization of our method 
to  include interception is, nonetheless, conceptually solved. 

In  general, the outer boundary condition for n comes from the matching requirement 
with the outer (deterministic) problem. This is best solved along the characteristics 
(the particle Lagrangian trajectories; cf. Fernandez de la Mora & Rosner 1981), and 
provides a value of pp (or n) for each characteristic, that  is, a condition of the form 
n, = nm(<). Recall that, in the matching region (ii), n is constant along each 
characteristic (fixed by a value of 6 (5 = constant). Now, the smallness of the 
diffusivity of particles can be exploited again to  simplify the outer boundary 
condition to a form compatible also with the existence of self-similar solutions 
n = n(y) .  Roughly speaking, the thickness of the diffusion sublayer is very small and 
only those trajectories passing very close to the wall supply material able to reach 
it. But those trajectories are necessarily very close to the stagnation-point trajectory, 
thus we anticipate that to a first approximation n, will be independent of 6, and equal 
to n,(O). I n  other words, only particles originating in a very thin streamtube centred 
about the stagnation line pass close enough to the sphere to diffuse to  it.  Thus, along 
the deterministic portion of the path their fates are so much alike that n, has 
virtually the same value n,(O) for all such trajectories. For the moment we take n, 
as a known constant (see appendix A) and write the outer boundary condition as 

n+n,  (6% 1 ) .  

t Note tha t  both f ;  and the stream function are constant along particle streamlines. 
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FIGURE 2. Effect of particle inertia on their diffusion to a sphere at low Reynolds number. Local 
deposition rates (normalized by the forward stagnation-point value (at 0 = 0)) us. angle 0 
(0 < 0 < n). 

The rigorous demonstration of this point, to the lowest order in an expansion in 
powers of D ,  is left to appendix C. 

Solution. The solution of (27) with the boundary condition n = 0 a t  f; = 0 and 
n = n, a t  6 >> 1 is familiar: s,” exp (,-4x3) dx 

(27’) _ -  - 

nm JOm exp ( -4x3) dx’ 

with the similarity variable ,LA defined as 

,LA = ( $ P e ) & d .  (27”) 

The wall slope is 

with the new function $(0; St) given by 

$(0, St) = sin 8 exp (QSt cos 0) sin2 8’ exp ($St cos 0‘) d8’ . (29) I” 
n, is given by (24) when pp is the stagnation-point value a t  the outer edge of the 
Brownian-diffusion sublayer, which has to be calculated independently taking 
account of the compressibility of the particle phase (see 53.4). 

The deposition rate normalized by the stagnation-point value varies as 
@(0, St)/$(O, St), and is shown in figure 2 for several values of the Stokes number (note 
that $ ( O ,  S t )  = 3i exp (3St)) .  In  the case St = 0 the integral appearing in (29) has an 
analytical expression, and the corresponding solution coincides with the one given 
by Levich (1962). For larger values of the Stokes number the rate of particle collection 
falls rapidly with distance from the stagnation point, owing to centrifugation of the 
particles away from the sphere. 
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From (28) we may obtain the local particle mass-transfer Stanton number 

(wherej” is the local particle mass flux to the sphere: j “  = -D8pP/8rlrmR), and also 
the overall deposition rate by integrating j ”  over the sphere’s surface. Defining 

. .  
then the total particle mass flux is 

(31) 

(32) 

where values of I for selected Stokes numbers are given in table 1 ,  and ppw/ppm is 
the particle inertial enrichment just at the outer edge of the Brownian sublayer at 
the stagnation point. The factor I accounts for centrifugation effects, which tend to 
reduce m with increasing Stokes number, while the factor ppw/ppoo increases with St ,  
and is calculated in $3.4. 

I 1.400 1.2201 0735 04612 02513 02127 
St 0 005 0.25 050 1 .o 1.2 

TABLE 1 

3.4. Enrichment of the particle concentration along the stagnation trajectory for  a 
sphere in Stokes $ow: inertia-dominated regiont 

The calculation of particle inertial build-up ppW/ppm presents no difficulty because, 
away from the Brownian diffusion sublayer, the term P, may be neglected, and (4) 
and ( 5 )  constitute a totally hyperbolic system which may be integrated along 
the characteristics. The corresponding characteristic equations for the stagnation 
trajectory (0 = 0)  are (see appendix A) 

dr r r  

U-u - du 
u r = -  - ru dr’ 

- 

(33) 

(34) 

where for the purpose of simplifying the rather cumbersome notation we have used 
a new terminology defined in appendix A. 

Equations (33)-(35) have to  be integrated with the initial conditions 

This subsection parallels our previous analysis (Fernindez de la Mora & Rosner 1981) for the 
inertial enrichment of particles along the stagnation line of a cylinder a t  large Reynolds-number. 
Tnterestingly enough, none of the many previous particle-trajectory calculations (some older than 
one of us) have followed the evolution of p,,. 
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where U and V are given by the classical expressions (Landau & Lifshitz 1971) 
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FIGURE 3. Inertial enrichment of local particle-phase density along the stagnation-point streamline 
at subcritical Stokes numbers. 
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FIGURE 4. Stagnation-point particle phase enrichment, the function I(St)  governing the integrated 
effect of centrifugal depletion about a spherical target, and their product, which determines the 
total particle mass deposition rate to the sphere at subcritical Stokes numbers (cf. (32)). 
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The results are shown in figure 3 and 4. For very small values of the Stokes number 
the centrifugal depletion effect I dominates over the stagnation region enrichment 
ppw/ppm, and the corresponding overall particle capture rate is initially a decreasing 
function of St. Ultimately, however, this trend is reversed to the point that for 
St = 1 .1 ,  close to the critical Stokes number (St, = 1.21194 according to Michael & 
Norey 1970) the inertial enhancement of the overall particle-deposition rate is larger 
than 10. 

Michael & Norey (1970) gave an analytical expression for the first-order term of 
the particle-density expansion along the stagnation line in powers of the Stokes 
number. Their result may be rearranged as? 

ln--- 81n 1 + -  --+-+- Xt+O(St2), 
P m  pp -”[ 8 ( lr) r r2 l 2r4 ‘ I  

and agrees well with our numerical calculations for values of the Stokes number of 
the order of, or smaller than, 0 3 .  

4. Conclusions 
The transition between the diffusion- and inertia-dominated behaviour for a dilute 

suspension of small particles in a gas has been described in closed form via a 
hydrodynamic model. We have neglected diffusion effects except in the immediate 
vicinity of the solid body, where inertial effects have been included as a first-order 
perturbation term in the diffusion equation governing near-wall particle-phase 
behaviour. The model has been applied to  the flow of a Newtonian incompressible 
host fluid about a sphere at low Reynolds numbers. The sphere’s forward stagnation 
region is enriched in particles owing to compressibility effects in the particle phase, 
while downstream from the stagnation region inertial forces act in the opposite 
direction, tending to  centrifuge the particles away from the wall, thus reducing local 
deposition rates by diffusion. We find that the overall rate of particle capture is 
significantly enhanced by inertia, except for a slight reduction in the region of Stokes 
numbers less than 0.3. The general formalism introduced may be generalized with 
minor changes to other geometries and other low-Reynolds-number flow models (such 
as the many used in filtration theory, which include rarefaction effects and the mutual 
interference between filter fibres). As an additional example, we sketch the case of 
Stokes flow about a cylinder in appendix B. 

We wish to thank Professor A. Liiian (Aeronautical School, Madrid) for a very 
useful discussion on the method of the subcharacteristics, and acknowledge the 
research support of AFOSR (Contract F49620-76C-0020 at Yale University). 

Appendix A. Particle-phase compressibility along the stagnation trajectory of 
an axisymmetric body 

The treatment here parallels our analysis (Fernandez de la Mora & Rosner 1981) 
for the high-Reynolds-number motion of a dusty gas.about a cylinder. To simplify 
the notation we adopt the following definitions with a totally different meaning than 
used previously : 

u 3 radial particle-phase velocity (previously u p r ) ,  

7 Note that r has been non-dimensionalized with respect to the sphere radius R.  
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(previously upe), 
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v G angular particle-phase velocity 

U = radial host-fluid velocity 

V = angular host-fluid velocity 
(previously U r ) ,  

(previously UB). 

The subindices r and 13 now denote partial differentiation with respect to those 
variables: uB = au/aO, U,  = aU/ar,  etc.. . . If the particle-phase pressure tensor is 
neglected, then the momentum-conservation equations (4) may be written in 
spherical coordinates as : 

Taking derivatives with respect to r and 8 in (A l ) ,  we obtain 

Since along particle trajectories v / u  = rde /d r ,  the first two left-hand-side equations 
above are equal to the third and the fourth. Therefore the same has to hold for the 
right-hand-side, implying that for trajectories 

Analogously, taking derivatives in (A 2) we obtain 

a a vu 
r 7 ar r dr r ' 

u, 0, - - ('> -- - vvBr & - vr uv,,+- =-- 
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along with 
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dv,  = v,,dr + ver d6 ,  

due = vr8dr + vOO d0 ,  

which by an identical process with the one followed for the u-component yields finally 

The mass-conservation equation for the particle phase is : 

where the term v cos 0 / r  sin 6 is indeterminate, but it is easily shown that because 

i a .  v0 a02 2ve 
v(6 = 0) = 0, 

lim ___ - (v sin 0) = -- = -. *+,, r sin 0 dB r6 a6 r 

Thus along the stagnation line 

d u  U-u 
- =- 
dr TU ' 

dr r r  

which may be easily integrated given the appropriate boundary conditions. 

Appendix B. Inertial and diffusive deposition of particles on a cylinder in 
low-Reynolds-number flow 

Near the cylinder's surface, the host-fluid velocity field is given by 

_ -  " - pC sin 6 ,  
urn 

where 7 is defined by (11) when R is the cylinder radius and C is a function of the 
Reynolds number which for the particular case of the Stokes-Oseen flow takes the 
form (see Batchelor 1967) 0 

P 
C =  

log (7*4/R)'  
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Analogously, as in 53.3, the particle mass-conservation equation takes the form (we 
now adopt the new definition St = CU,r /R)  

and calculation of the subcharacteristics suggests the use of the new variables 

5 = 7 s i d e  exp (St cos 81, 

n = pp exp ( - 2Xt cos 8)  
(B 5) 

(B 6) 

(leaving 8 unchanged), in terms of which the mass-conservation equation reduces to 

a% an 5-l- = Pe C exp ( -3St  cos 8) sinto -, at2 a8 

and finally to the familiar Leveque form 

after defining s = s,” s i d e ’  exp (3St cos 8’) d8’. (B 9) 

The problem is thus equivalent to the one solved in 53 except for the slightly 
different definitions of the variables n, 6 and s. 

Appendix C. Outer boundary condition for the diffusion boundary layer 
From (27’) the thickness of the diffusion boundary layer can be chosen such that 

+p3 z 1 .  The characteristic trajectory defining the boundary of the streamtube 
feeding the diffusion boundary layer can thus be chosen such that i t  is tangent to 
the line p = const = 9i: 

(C 1 )  

(C 2) 

(C 3) 

5* characteristic : vC = - exp ( -$St cos 8) ; 
sin 8 

$4 
sin 8 

p = const : qp = p($Pe)-+ exp ( -$St cos 8). 

The tangency condition requires 
T c  = 7 p  

Equation (C 3 )  is equivalent to (27”), while (C 4) implies dsld8 = 0, or 8 =’ 7~ (the 
solution s = 0 is incompatible with (C 3)). The two conditions clearly fix & and 8, 
the former determining the boundary of the streamtube of interest. It remains to 
calculate s(n),  though, instead, we shall use the following bound (equivalent to  
cos 8 < 1 for 0 < 8 < n): s (n )  < in exp ($s t ) .  

Thus from (27”) 6* is bounded by 

(C 5) 
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or, after taking ,u* = 9; and using (22),  
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exp [$st( 1 - cos 8)] .  

Close to the stagnation point 8 x 0, and (C 7)  may be rewritten as 

This trajectory is a hyperbola in the (8, 7)-plane, and when Pe 9 1 i t  clearly 
approaches the singular hyperbola 8q* = 0 (the stagnation streamline). Furthermore, 
as may be seen in figure 2, there is a region of thickness of the order of q x 0.1 below 
which the effect of particle phase compressibility dies away (clearly this is no longer 
true when St 2 1.1). At the outer edge of this region one has that 8 x Pe-?, and, as 
anticipated, the streamtube of capturable particles is indeed rather small. 
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Note added in proof 
After this paper had been accepted for publication, J. D. Ramshaw sent us his 

papers: Ramshaw (1979), ‘Brownian motion in a flowing fluid ’, Phys. Fluids 22, 
1595-1601 and Ramshaw (1981), ‘Brownian motion in a flowing fluid revisited’, Phys. 
Fluids 24, 121&1211. I n  these papers our equations (4)-(6) have been presented as 
a closed system describing the particle motion, and including a fluid-particle 
interaction force which is more general than ours (see our equation (7)) and which 
accounts for the Archimedean lift and thermophoresis. The author has also shown 
that pressure diffusion results from the particle inertia. However, some of his 
generalizations are inconsistent : if the thermophoretic force is included in the 
presence of temperature gradients, then the system is no longer in thermal equilibrium 
and the ideal gas law is no longer exact. Equation (18) of Ramshaw (1979) is thus 
invalid. The same inconsistency arises in the presence of velocity gradients, and 
Ramshaw does not mention that the particle pressure is given correctly by the ideal 
gas law only for small Stokes numbers. But then it is not necessary to solve (4)-(6), 
since V, is given by (9). 

John Fenn has referred us to the early work of H. Thoman, ‘Determination of the 
size of ice crystals formed during condensation of water in wind tunnels and of their 
effects in boundary layers ’ (Report 101 of the Aeronautical Research Institute of Sweden, 
Stockholm, July 1964). There, the close connection between particle inertia and 
pressure diffusion was implicit already (Appendix B). 

Finally, G. K. Batchelor has independently presented closed equations equivalent 
to our equations (4)-(6), and has used them to show the influence of particle inertia 
on the stability of fluidized beds of small particles (G. K. Batchelor, ‘Sedimentation 
of small particles ’, paper presented a t  the 4th International Conference on Physico- 
Chemical Hydrodynamics, The City College, New York, 13-17 June 1982). 


